Nuprl Lemma : coW-pos-agree_refl

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].  ∀p:Pos(coW-game(a.B[a];w;w')). coW-pos-agree(a.B[a];w;w';p;p)


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-pos: Pos(g) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T cand: c∧ B and: P ∧ Q coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') pi1: fst(t) sg-pos: Pos(g) all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coW-game_wf sg-pos_wf copathAgree_refl nat_wf copath-length_wf le_reflexive
Rules used in proof :  universeEquality functionEquality cumulativity instantiate because_Cache independent_pairFormation rename setElimination hypothesis applyEquality lambdaEquality hypothesisEquality isectElimination dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalRule sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].
    \mforall{}p:Pos(coW-game(a.B[a];w;w')).  coW-pos-agree(a.B[a];w;w';p;p)



Date html generated: 2018_07_25-PM-01_43_12
Last ObjectModification: 2018_06_20-PM-02_50_49

Theory : co-recursion


Home Index