Nuprl Lemma : const-stream_wf

[A:Type]. ∀[x:A].  const-stream(x) ∈ stream(A) supposing valueall-type(A)


Proof




Definitions occuring in Statement :  const-stream: const-stream(x) stream: stream(A) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a const-stream: const-stream(x)
Lemmas referenced :  mk-stream_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x:A].    const-stream(x)  \mmember{}  stream(A)  supposing  valueall-type(A)



Date html generated: 2016_05_14-AM-06_23_09
Last ObjectModification: 2015_12_26-AM-11_58_59

Theory : co-recursion


Home Index