Nuprl Lemma : const-stream_wf
∀[A:Type]. ∀[x:A].  const-stream(x) ∈ stream(A) supposing valueall-type(A)
Proof
Definitions occuring in Statement : 
const-stream: const-stream(x)
, 
stream: stream(A)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
const-stream: const-stream(x)
Lemmas referenced : 
mk-stream_wf, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[x:A].    const-stream(x)  \mmember{}  stream(A)  supposing  valueall-type(A)
Date html generated:
2016_05_14-AM-06_23_09
Last ObjectModification:
2015_12_26-AM-11_58_59
Theory : co-recursion
Home
Index