Nuprl Lemma : mk-stream_wf

[A:Type]. ∀[f:A ⟶ A]. ∀[x:A].  mk-stream(f;x) ∈ stream(A) supposing valueall-type(A)


Proof




Definitions occuring in Statement :  mk-stream: mk-stream(f;x) stream: stream(A) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mk-stream: mk-stream(f;x) stream: stream(A) so_lambda: λ2x.t[x] so_apply: x[s] isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  top: Top bfalse: ff callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  fix_wf_corec_parameter top_wf valueall-type-has-valueall evalall-reduce bool_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality hypothesisEquality universeEquality because_Cache isect_memberEquality unionElimination equalityElimination functionExtensionality voidElimination voidEquality hypothesis independent_pairEquality independent_isectElimination applyEquality callbyvalueReduce cumulativity functionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x:A].    mk-stream(f;x)  \mmember{}  stream(A)  supposing  valueall-type(A)



Date html generated: 2016_05_14-AM-06_23_03
Last ObjectModification: 2015_12_26-AM-11_59_06

Theory : co-recursion


Home Index