Nuprl Lemma : corecbar_wf

[T:Type]. (corecbar(T) ∈ Type)


Proof




Definitions occuring in Statement :  corecbar: corecbar(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T corecbar: corecbar(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  bar-base_wf bar-equal_wf bar-equal-equiv quotient_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality lemma_by_obid isectElimination thin hypothesisEquality because_Cache lambdaEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  (corecbar(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_20_58
Last ObjectModification: 2015_12_26-PM-00_00_16

Theory : co-recursion


Home Index