Nuprl Lemma : in-bar_wf

[T:Type]. ∀[b:T].  (in-bar(b) ∈ bar-base(T))


Proof




Definitions occuring in Statement :  in-bar: in-bar(b) bar-base: bar-base(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T in-bar: in-bar(b) subtype_rel: A ⊆B
Lemmas referenced :  bar-base_wf bar-base_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule inlEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:T].    (in-bar(b)  \mmember{}  bar-base(T))



Date html generated: 2016_05_14-AM-06_19_59
Last ObjectModification: 2015_12_26-PM-00_01_39

Theory : co-recursion


Home Index