Nuprl Lemma : in-bar_wf
∀[T:Type]. ∀[b:T].  (in-bar(b) ∈ bar-base(T))
Proof
Definitions occuring in Statement : 
in-bar: in-bar(b)
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
in-bar: in-bar(b)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
bar-base_wf, 
bar-base_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
inlEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:T].    (in-bar(b)  \mmember{}  bar-base(T))
Date html generated:
2016_05_14-AM-06_19_59
Last ObjectModification:
2015_12_26-PM-00_01_39
Theory : co-recursion
Home
Index