Nuprl Lemma : k-subtype_wf
∀[k:ℕ]. ∀[A,B:ℕk ⟶ Type].  (A ⊆ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
k-subtype: A ⊆ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
k-subtype: A ⊆ B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
subtype_rel_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    (A  \msubseteq{}  B  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-00_08_47
Last ObjectModification:
2017_10_18-PM-02_31_15
Theory : co-recursion
Home
Index