Nuprl Lemma : k-subtype_wf

[k:ℕ]. ∀[A,B:ℕk ⟶ Type].  (A ⊆ B ∈ ℙ)


Proof




Definitions occuring in Statement :  k-subtype: A ⊆ B int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T k-subtype: A ⊆ B nat: so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf subtype_rel_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality applyEquality functionExtensionality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    (A  \msubseteq{}  B  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-00_08_47
Last ObjectModification: 2017_10_18-PM-02_31_15

Theory : co-recursion


Home Index