Nuprl Lemma : m-corec_wf

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type]. ∀[i:ℕk].  (m-corec(T.F[T];i) ∈ Type)


Proof




Definitions occuring in Statement :  m-corec: m-corec(T.F[T];i) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-corec: m-corec(T.F[T];i) nat:
Lemmas referenced :  mutual-corec_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality setElimination rename isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[i:\mBbbN{}k].    (m-corec(T.F[T];i)  \mmember{}  Type)



Date html generated: 2018_05_21-PM-00_17_45
Last ObjectModification: 2017_10_18-PM-02_45_50

Theory : co-recursion


Home Index