Nuprl Lemma : mutual-corec_wf

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].  (mutual-corec(T.F[T]) ∈ ℕk ⟶ Type)


Proof




Definitions occuring in Statement :  mutual-corec: mutual-corec(T.F[T]) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mutual-corec: mutual-corec(T.F[T]) so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  k-intersection_wf primrec_wf int_seg_wf top_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality instantiate functionEquality cumulativity natural_numberEquality setElimination rename because_Cache hypothesis universeEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].    (mutual-corec(T.F[T])  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  Type)



Date html generated: 2018_05_21-PM-00_10_27
Last ObjectModification: 2017_10_18-PM-02_41_59

Theory : co-recursion


Home Index