Nuprl Lemma : not-not-sig-to-W-implies-stable

[A:Type]. ((∀[B:A ⟶ Type]. ((¬¬(a:A × B[a])))  W(A;a.B[a])))  Stable{A})


Proof




Definitions occuring in Statement :  W: W(A;a.B[a]) stable: Stable{P} uall: [x:A]. B[x] so_apply: x[s] not: ¬A implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q stable: Stable{P} uimplies: supposing a member: t ∈ T not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  not_wf uall_wf W_wf false_wf W-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination lemma_by_obid isectElimination hypothesis rename instantiate functionEquality cumulativity universeEquality productEquality applyEquality because_Cache independent_functionElimination dependent_pairEquality promote_hyp productElimination hypothesis_subsumption

Latex:
\mforall{}[A:Type].  ((\mforall{}[B:A  {}\mrightarrow{}  Type].  ((\mneg{}\mneg{}(a:A  \mtimes{}  (\mneg{}B[a])))  {}\mRightarrow{}  W(A;a.B[a])))  {}\mRightarrow{}  Stable\{A\})



Date html generated: 2016_05_14-AM-06_17_45
Last ObjectModification: 2015_12_26-PM-00_03_28

Theory : co-recursion


Home Index