Nuprl Lemma : not-not-sig-to-W-implies-stable
∀[A:Type]. ((∀[B:A ⟶ Type]. ((¬¬(a:A × (¬B[a]))) 
⇒ W(A;a.B[a]))) 
⇒ Stable{A})
Proof
Definitions occuring in Statement : 
W: W(A;a.B[a])
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
not_wf, 
uall_wf, 
W_wf, 
false_wf, 
W-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
rename, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
productEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
dependent_pairEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption
Latex:
\mforall{}[A:Type].  ((\mforall{}[B:A  {}\mrightarrow{}  Type].  ((\mneg{}\mneg{}(a:A  \mtimes{}  (\mneg{}B[a])))  {}\mRightarrow{}  W(A;a.B[a])))  {}\mRightarrow{}  Stable\{A\})
Date html generated:
2016_05_14-AM-06_17_45
Last ObjectModification:
2015_12_26-PM-00_03_28
Theory : co-recursion
Home
Index