Nuprl Lemma : not-not-sig-to-W-implies-stable
∀[A:Type]. ((∀[B:A ⟶ Type]. ((¬¬(a:A × (¬B[a])))
⇒ W(A;a.B[a])))
⇒ Stable{A})
Proof
Definitions occuring in Statement :
W: W(A;a.B[a])
,
stable: Stable{P}
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
not: ¬A
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
stable: Stable{P}
,
uimplies: b supposing a
,
member: t ∈ T
,
not: ¬A
,
false: False
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
ext-eq: A ≡ B
,
and: P ∧ Q
Lemmas referenced :
not_wf,
uall_wf,
W_wf,
false_wf,
W-ext
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
voidElimination,
lemma_by_obid,
isectElimination,
hypothesis,
rename,
instantiate,
functionEquality,
cumulativity,
universeEquality,
productEquality,
applyEquality,
because_Cache,
independent_functionElimination,
dependent_pairEquality,
promote_hyp,
productElimination,
hypothesis_subsumption
Latex:
\mforall{}[A:Type]. ((\mforall{}[B:A {}\mrightarrow{} Type]. ((\mneg{}\mneg{}(a:A \mtimes{} (\mneg{}B[a]))) {}\mRightarrow{} W(A;a.B[a]))) {}\mRightarrow{} Stable\{A\})
Date html generated:
2016_05_14-AM-06_17_45
Last ObjectModification:
2015_12_26-PM-00_03_28
Theory : co-recursion
Home
Index