Nuprl Lemma : stream-pointwise-iff
∀[T:Type]
∀R:T ⟶ T ⟶ ℙ. ∀s1,s2:stream(T).
(s1 stream-pointwise(R) s2
⇐⇒ (s-hd(s1) R s-hd(s2)) ∧ (s-tl(s1) stream-pointwise(R) s-tl(s2)))
Proof
Definitions occuring in Statement :
stream-pointwise: stream-pointwise(R)
,
s-tl: s-tl(s)
,
s-hd: s-hd(s)
,
stream: stream(A)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
infix_ap: x f y
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
stream-pointwise: stream-pointwise(R)
,
rel_implies: R1 => R2
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
guard: {T}
,
rel-monotone: rel-monotone{i:l}(T;R.F[R])
,
rel-continuous: rel-continuous{i:l}(T;R.F[R])
,
isect-rel: isect-rel(T;i.R[i])
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
Lemmas referenced :
bigrel-iff,
and_wf,
s-hd_wf,
s-tl_wf,
stream_wf,
stream-pointwise_wf,
all_wf,
nat_wf,
false_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
dependent_functionElimination,
sqequalRule,
lambdaEquality,
applyEquality,
hypothesisEquality,
hypothesis,
functionEquality,
cumulativity,
universeEquality,
independent_functionElimination,
productElimination,
independent_pairFormation,
dependent_set_memberEquality,
natural_numberEquality
Latex:
\mforall{}[T:Type]
\mforall{}R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}. \mforall{}s1,s2:stream(T).
(s1 stream-pointwise(R) s2 \mLeftarrow{}{}\mRightarrow{} (s-hd(s1) R s-hd(s2)) \mwedge{} (s-tl(s1) stream-pointwise(R) s-tl(s2)))
Date html generated:
2016_05_14-AM-06_24_34
Last ObjectModification:
2015_12_26-AM-11_58_07
Theory : co-recursion
Home
Index