Nuprl Lemma : stream-pointwise-iff
∀[T:Type]
  ∀R:T ⟶ T ⟶ ℙ. ∀s1,s2:stream(T).
    (s1 stream-pointwise(R) s2 ⇐⇒ (s-hd(s1) R s-hd(s2)) ∧ (s-tl(s1) stream-pointwise(R) s-tl(s2)))
Proof
Definitions occuring in Statement : 
stream-pointwise: stream-pointwise(R), 
s-tl: s-tl(s), 
s-hd: s-hd(s), 
stream: stream(A), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
infix_ap: x f y, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
stream-pointwise: stream-pointwise(R), 
rel_implies: R1 => R2, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
guard: {T}, 
rel-monotone: rel-monotone{i:l}(T;R.F[R]), 
rel-continuous: rel-continuous{i:l}(T;R.F[R]), 
isect-rel: isect-rel(T;i.R[i]), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A
Lemmas referenced : 
bigrel-iff, 
and_wf, 
s-hd_wf, 
s-tl_wf, 
stream_wf, 
stream-pointwise_wf, 
all_wf, 
nat_wf, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}s1,s2:stream(T).
        (s1  stream-pointwise(R)  s2  \mLeftarrow{}{}\mRightarrow{}  (s-hd(s1)  R  s-hd(s2))  \mwedge{}  (s-tl(s1)  stream-pointwise(R)  s-tl(s2)))
Date html generated:
2016_05_14-AM-06_24_34
Last ObjectModification:
2015_12_26-AM-11_58_07
Theory : co-recursion
Home
Index