Nuprl Lemma : stream-pointwise-iff

[T:Type]
  ∀R:T ⟶ T ⟶ ℙ. ∀s1,s2:stream(T).
    (s1 stream-pointwise(R) s2 ⇐⇒ (s-hd(s1) s-hd(s2)) ∧ (s-tl(s1) stream-pointwise(R) s-tl(s2)))


Proof




Definitions occuring in Statement :  stream-pointwise: stream-pointwise(R) s-tl: s-tl(s) s-hd: s-hd(s) stream: stream(A) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y prop: so_apply: x[s] implies:  Q stream-pointwise: stream-pointwise(R) rel_implies: R1 => R2 and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B guard: {T} rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel-continuous: rel-continuous{i:l}(T;R.F[R]) isect-rel: isect-rel(T;i.R[i]) nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  bigrel-iff and_wf s-hd_wf s-tl_wf stream_wf stream-pointwise_wf all_wf nat_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis functionEquality cumulativity universeEquality independent_functionElimination productElimination independent_pairFormation dependent_set_memberEquality natural_numberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}s1,s2:stream(T).
        (s1  stream-pointwise(R)  s2  \mLeftarrow{}{}\mRightarrow{}  (s-hd(s1)  R  s-hd(s2))  \mwedge{}  (s-tl(s1)  stream-pointwise(R)  s-tl(s2)))



Date html generated: 2016_05_14-AM-06_24_34
Last ObjectModification: 2015_12_26-AM-11_58_07

Theory : co-recursion


Home Index