Nuprl Lemma : lifting-decide-callbyvalue

[a,H,F,G:Top].
  (case eval in H[z] of inl(x) => F[x] inr(x) => G[x] eval in
                                                                case H[z] of inl(x) => F[x] inr(x) => G[x])


Proof




Definitions occuring in Statement :  callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  lifting-strict-callbyvalue top_wf equal_wf has-value_wf_base base_wf is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesis hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom

Latex:
\mforall{}[a,H,F,G:Top].
    (case  eval  z  =  a  in  H[z]  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x]  \msim{}  eval  z  =  a  in
                                                                                                                                case  H[z]
                                                                                                                                  of  inl(x)  =>
                                                                                                                                  F[x]
                                                                                                                                  |  inr(x)  =>
                                                                                                                                  G[x])



Date html generated: 2017_04_14-AM-07_21_06
Last ObjectModification: 2017_02_27-PM-02_54_34

Theory : computation


Home Index