Nuprl Lemma : lifting-decide-spread
∀[a,F,A,B:Top].
  (case let u,v = a in F[u;v] of inl(x) => A[x] | inr(x) => B[x] ~ let u,v = a 
                                                                   in case F[u;v] of inl(x) => A[x] | inr(x) => B[x])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
spread: spread def, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
lifting-strict-spread, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom
Latex:
\mforall{}[a,F,A,B:Top].
    (case  let  u,v  =  a  in  F[u;v]  of  inl(x)  =>  A[x]  |  inr(x)  =>  B[x]  \msim{}  let  u,v  =  a 
                                                                                                                                      in  case  F[u;v]
                                                                                                                                              of  inl(x)  =>
                                                                                                                                              A[x]
                                                                                                                                              |  inr(x)  =>
                                                                                                                                              B[x])
Date html generated:
2017_04_14-AM-07_21_09
Last ObjectModification:
2017_02_27-PM-02_54_39
Theory : computation
Home
Index