Nuprl Lemma : strictness-subtract-right

[a:Top]. (a - ⊥ eval in ⊥)


Proof




Definitions occuring in Statement :  bottom: callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top subtract: m sqequal: t
Definitions unfolded in proof :  subtract: m uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ and: P ∧ Q all: x:A. B[x] implies:  Q uimplies: supposing a prop: not: ¬A false: False
Lemmas referenced :  value-type-has-value int-value-type equal_wf bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueAdd sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality lambdaFormation extract_by_obid isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination callbyvalueMinus because_Cache voidElimination addExceptionCases axiomSqleEquality minusExceptionCases exceptionSqequal sqleReflexivity callbyvalueCallbyvalue callbyvalueReduce callbyvalueExceptionCases sqequalAxiom

Latex:
\mforall{}[a:Top].  (a  -  \mbot{}  \msim{}  eval  x  =  a  in  \mbot{})



Date html generated: 2017_04_14-AM-07_21_28
Last ObjectModification: 2017_02_27-PM-02_54_48

Theory : computation


Home Index