Nuprl Lemma : absolutelyfree-unique
∀[T,S:Type].  (absolutelyfree{i:l}(T) 
⇒ absolutelyfree{i:l}(S) 
⇒ T ≡ S)
Proof
Definitions occuring in Statement : 
absolutelyfree: absolutelyfree{i:l}(T)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
absolutelyfree: absolutelyfree{i:l}(T)
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
absolutelyfree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T,S:Type].    (absolutelyfree\{i:l\}(T)  {}\mRightarrow{}  absolutelyfree\{i:l\}(S)  {}\mRightarrow{}  T  \mequiv{}  S)
Date html generated:
2017_09_29-PM-06_10_45
Last ObjectModification:
2017_04_21-PM-00_38_20
Theory : continuity
Home
Index