Nuprl Lemma : absolutelyfree-unique

[T,S:Type].  (absolutelyfree{i:l}(T)  absolutelyfree{i:l}(S)  T ≡ S)


Proof




Definitions occuring in Statement :  absolutelyfree: absolutelyfree{i:l}(T) ext-eq: A ≡ B uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q absolutelyfree: absolutelyfree{i:l}(T) and: P ∧ Q ext-eq: A ≡ B all: x:A. B[x] prop: subtype_rel: A ⊆B
Lemmas referenced :  absolutelyfree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination extract_by_obid isectElimination cumulativity sqequalRule lambdaEquality independent_pairEquality axiomEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T,S:Type].    (absolutelyfree\{i:l\}(T)  {}\mRightarrow{}  absolutelyfree\{i:l\}(S)  {}\mRightarrow{}  T  \mequiv{}  S)



Date html generated: 2017_09_29-PM-06_10_45
Last ObjectModification: 2017_04_21-PM-00_38_20

Theory : continuity


Home Index