Nuprl Lemma : d-CCC-finite
∀[T:Type]. (finite(T) 
⇒ dCCC(T))
Proof
Definitions occuring in Statement : 
contra-dcc: dCCC(T)
, 
finite: finite(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
pi1: fst(t)
, 
decidable: Dec(P)
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
contra-dcc: dCCC(T)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_witness, 
pi1_wf, 
nat_wf, 
istype-universe, 
finite_wf, 
bool_wf, 
istype-assert, 
istype-nat, 
istype-le, 
istype-void, 
finite-decidable-inhabited, 
decidable__assert, 
decidable__not, 
assert_wf, 
not_wf, 
decidable-exists-finite
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIstype, 
Error :dependent_pairEquality_alt, 
productElimination, 
Error :inhabitedIsType, 
functionExtensionality, 
universeEquality, 
instantiate, 
Error :productIsType, 
Error :functionIsType, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
Error :dependent_set_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
unionElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
Error :universeIsType, 
applyEquality, 
Error :lambdaEquality_alt, 
sqequalRule, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  dCCC(T))
Date html generated:
2019_06_20-PM-03_00_27
Last ObjectModification:
2019_06_12-PM-08_08_34
Theory : continuity
Home
Index