Nuprl Lemma : d-CCC-finite

[T:Type]. (finite(T)  dCCC(T))


Proof




Definitions occuring in Statement :  contra-dcc: dCCC(T) finite: finite(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  pi1: fst(t) decidable: Dec(P) prop: false: False not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: exists: x:A. B[x] or: P ∨ Q so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] contra-dcc: dCCC(T) implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_witness pi1_wf nat_wf istype-universe finite_wf bool_wf istype-assert istype-nat istype-le istype-void finite-decidable-inhabited decidable__assert decidable__not assert_wf not_wf decidable-exists-finite
Rules used in proof :  equalitySymmetry equalityTransitivity Error :equalityIstype,  Error :dependent_pairEquality_alt,  productElimination Error :inhabitedIsType,  functionExtensionality universeEquality instantiate Error :productIsType,  Error :functionIsType,  voidElimination independent_pairFormation natural_numberEquality Error :dependent_set_memberEquality_alt,  Error :dependent_pairFormation_alt,  unionElimination rename because_Cache dependent_functionElimination Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  sqequalRule independent_functionElimination Error :lambdaFormation_alt,  hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  dCCC(T))



Date html generated: 2019_06_20-PM-03_00_27
Last ObjectModification: 2019_06_12-PM-08_08_34

Theory : continuity


Home Index