Nuprl Lemma : finite-decidable-inhabited

[T:Type]. (finite(T)  (T ∨ T)))


Proof




Definitions occuring in Statement :  finite: finite(T) uall: [x:A]. B[x] not: ¬A implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  surject: Surj(A;B;f) biject: Bij(A;B;f) squash: T top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) and: P ∧ Q lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: false: False not: ¬A guard: {T} sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: member: t ∈ T all: x:A. B[x] equipollent: B exists: x:A. B[x] finite: finite(T) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  istype-less_than decidable__lt int_formula_prop_less_lemma intformless_wf int_seg_wf subtype_rel_self istype-le int_formula_prop_le_lemma intformle_wf decidable__le int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat nat_properties int_seg_properties le_wf set_subtype_base nat_wf istype-universe finite_wf istype-void int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  Error :productIsType,  imageElimination baseClosed imageMemberEquality Error :dependent_set_memberEquality_alt,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation applyLambdaEquality equalitySymmetry equalityTransitivity Error :inhabitedIsType,  Error :lambdaEquality_alt,  applyEquality universeEquality Error :functionIsType,  sqequalRule Error :inlFormation_alt,  Error :universeIsType,  Error :inrFormation_alt,  independent_functionElimination because_Cache independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination natural_numberEquality hypothesis hypothesisEquality rename setElimination dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  (T  \mvee{}  (\mneg{}T)))



Date html generated: 2019_06_20-PM-02_18_49
Last ObjectModification: 2019_06_12-PM-03_05_33

Theory : equipollence!!cardinality!


Home Index