Nuprl Lemma : finite-decidable-inhabited
∀[T:Type]. (finite(T) 
⇒ (T ∨ (¬T)))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
universe: Type
Definitions unfolded in proof : 
surject: Surj(A;B;f)
, 
biject: Bij(A;B;f)
, 
squash: ↓T
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
finite: finite(T)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-less_than, 
decidable__lt, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_wf, 
subtype_rel_self, 
istype-le, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
le_wf, 
set_subtype_base, 
nat_wf, 
istype-universe, 
finite_wf, 
istype-void, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int
Rules used in proof : 
Error :productIsType, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
applyEquality, 
universeEquality, 
Error :functionIsType, 
sqequalRule, 
Error :inlFormation_alt, 
Error :universeIsType, 
Error :inrFormation_alt, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  (T  \mvee{}  (\mneg{}T)))
Date html generated:
2019_06_20-PM-02_18_49
Last ObjectModification:
2019_06_12-PM-03_05_33
Theory : equipollence!!cardinality!
Home
Index