Nuprl Lemma : dec-exists-int-seg

a,b:ℤ.  ∀[F:{a..b-} ⟶ ℙ]. ((∀k:{a..b-}. Dec(F[k]))  Dec(∃k:{a..b-}. F[k]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  decidable_wf all_wf int_seg_wf decidable__exists_int_seg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality isectElimination sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination functionEquality cumulativity universeEquality intEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    \mforall{}[F:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}k:\{a..b\msupminus{}\}.  Dec(F[k]))  {}\mRightarrow{}  Dec(\mexists{}k:\{a..b\msupminus{}\}.  F[k]))



Date html generated: 2016_05_14-PM-09_56_16
Last ObjectModification: 2016_01_16-PM-05_37_41

Theory : continuity


Home Index