Nuprl Lemma : init0-cantor2baire

a:ℕ ⟶ 𝔹init0(cantor2baire(a))


Proof




Definitions occuring in Statement :  init0: init0(a) cantor2baire: cantor2baire(a) nat: bool: 𝔹 all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  implies:  Q not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: false: False prop: exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q decidable: Dec(P) top: Top member: t ∈ T cantor2baire-aux: cantor2baire-aux(a;n) init0: init0(a) cantor2baire: cantor2baire(a) all: x:A. B[x]
Lemmas referenced :  bool_wf nat_wf le_wf false_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int primrec0_lemma
Rules used in proof :  functionEquality independent_pairFormation equalitySymmetry equalityTransitivity dependent_set_memberEquality computeAll hypothesisEquality intEquality lambdaEquality dependent_pairFormation independent_isectElimination isectElimination unionElimination because_Cache natural_numberEquality hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  init0(cantor2baire(a))



Date html generated: 2017_04_21-AM-11_22_27
Last ObjectModification: 2017_04_20-PM-04_24_21

Theory : continuity


Home Index