Nuprl Lemma : not-excluded-middle-thru-continuity
¬(∀P:ℙ. (P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
so_apply: x[s]
Lemmas referenced : 
not_wf, 
or_wf, 
all_wf, 
nat_wf, 
equal-wf-T-base, 
not-decidable-zero-sequence
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
baseClosed, 
voidElimination, 
instantiate, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity
Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P)))
Date html generated:
2016_05_14-PM-09_46_08
Last ObjectModification:
2016_01_15-PM-10_56_01
Theory : continuity
Home
Index