Nuprl Lemma : notAC20-ssq

T:Type
  ((↓T)
   (∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
          ((∀n:(ℕ ⟶ ℕ) ⟶ ℕ(↓∃m:T. (P m)))  (↓∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ(P (f n)))))))


Proof




Definitions occuring in Statement :  nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T exists: x:A. B[x] guard: {T}
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf not-choice-baire-to-nat-ssq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination instantiate introduction extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality universeEquality sqequalRule lambdaEquality applyEquality independent_pairFormation dependent_functionElimination imageElimination imageMemberEquality baseClosed dependent_pairFormation productElimination

Latex:
\mforall{}T:Type
    ((\mdownarrow{}T)
    {}\mRightarrow{}  (\mneg{}(\mforall{}P:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
                    ((\mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}m:T.  (P  n  m)))
                    {}\mRightarrow{}  (\mdownarrow{}\mexists{}f:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  T.  \mforall{}n:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  (P  n  (f  n)))))))



Date html generated: 2018_05_21-PM-01_20_24
Last ObjectModification: 2018_05_19-AM-06_32_41

Theory : continuity


Home Index