Nuprl Lemma : not-choice-baire-to-nat-ssq
¬(∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ. (∀t:(ℕ ⟶ ℕ) ⟶ ℕ. (↓P[t]) 
⇐⇒ ↓∀t:(ℕ ⟶ ℕ) ⟶ ℕ. P[t]))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
squash: ↓T
, 
unsquashed-WCP: unsquashed-WCP
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
exists_wf, 
nat_wf, 
all_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
strong-continuity2-implies-weak-skolem, 
iff_wf, 
squash_wf, 
quotient-implies-squash, 
unsquashed-weak-continuity-false, 
decidable__le, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
because_Cache, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
instantiate, 
cumulativity, 
universeEquality, 
productElimination, 
imageElimination, 
dependent_pairFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality
Latex:
\mneg{}(\mforall{}P:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}t:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}P[t])  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mforall{}t:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  P[t]))
Date html generated:
2017_04_17-AM-10_02_11
Last ObjectModification:
2017_02_27-PM-05_53_38
Theory : continuity
Home
Index