Nuprl Lemma : strong-continuity2-no-inner-squash-unique-bool

F:(ℕ ⟶ 𝔹) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
     ∀f:ℕ ⟶ 𝔹. ∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  implies:  Q member: t ∈ T uall: [x:A]. B[x] strong-continuity3: strong-continuity3(T;F) all: x:A. B[x]
Lemmas referenced :  nat_wf surject-nat-bool bool_wf strong-continuity3-half-squash-surject
Rules used in proof :  functionEquality hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n)))))



Date html generated: 2017_09_29-PM-06_05_39
Last ObjectModification: 2017_09_04-PM-00_13_19

Theory : continuity


Home Index