Nuprl Lemma : all_functionality_wrt_implies

[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀z:S. {P[z]  Q[z]})  {(∀x:S. P[x])  (∀y:T. Q[y])} supposing T ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename lambdaFormation hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination lambdaEquality applyEquality functionEquality Error :universeIsType,  instantiate universeEquality Error :inhabitedIsType,  Error :functionIsType,  hyp_replacement equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}z:S.  \{P[z]  {}\mRightarrow{}  Q[z]\})  {}\mRightarrow{}  \{(\mforall{}x:S.  P[x])  {}\mRightarrow{}  (\mforall{}y:T.  Q[y])\}  supposing  S  =  T



Date html generated: 2019_06_20-AM-11_17_02
Last ObjectModification: 2018_09_26-AM-10_24_35

Theory : core_2


Home Index