Nuprl Lemma : all_functionality_wrt_implies
∀[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀z:S. {P[z] 
⇒ Q[z]}) 
⇒ {(∀x:S. P[x]) 
⇒ (∀y:T. Q[y])} supposing S = T ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
lambdaEquality, 
applyEquality, 
functionEquality, 
Error :universeIsType, 
instantiate, 
universeEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
hyp_replacement, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}z:S.  \{P[z]  {}\mRightarrow{}  Q[z]\})  {}\mRightarrow{}  \{(\mforall{}x:S.  P[x])  {}\mRightarrow{}  (\mforall{}y:T.  Q[y])\}  supposing  S  =  T
Date html generated:
2019_06_20-AM-11_17_02
Last ObjectModification:
2018_09_26-AM-10_24_35
Theory : core_2
Home
Index