Nuprl Lemma : classical-double-negation
∀P:ℙ. {¬¬P 
⇐⇒ P}
Proof
Definitions occuring in Statement : 
classical: {P}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
classical: {P}
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
false_wf, 
not_wf, 
iff_wf, 
it_wf, 
classical-excluded-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
universeEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
isectElimination, 
unionElimination, 
independent_pairFormation, 
lambdaEquality, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
sqequalRule
Latex:
\mforall{}P:\mBbbP{}.  \{\mneg{}\mneg{}P  \mLeftarrow{}{}\mRightarrow{}  P\}
Date html generated:
2016_05_13-PM-03_16_37
Last ObjectModification:
2016_01_06-PM-05_20_46
Theory : core_2
Home
Index