Nuprl Lemma : less_wf
∀[T:Type]. ∀[a,b:T]. ∀[x,y:ℤ].  (if (x) < (y)  then a  else b ∈ T)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
less: if (a) < (b)  then c  else d
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lessCases, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_pairFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
axiomSqEquality, 
extract_by_obid, 
isect_memberEquality, 
because_Cache, 
promote_hyp, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
axiomEquality, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].  \mforall{}[x,y:\mBbbZ{}].    (if  (x)  <  (y)    then  a    else  b  \mmember{}  T)
Date html generated:
2019_06_20-AM-11_18_55
Last ObjectModification:
2018_08_21-AM-11_05_44
Theory : core_2
Home
Index