Nuprl Lemma : triple-neg

[A:ℙ]. uiff(¬¬¬A;¬A)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False decidable: Dec(P) or: P ∨ Q prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  dneg_elim_a not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination extract_by_obid isectElimination hypothesisEquality inlFormation productElimination promote_hyp voidElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache addLevel impliesFunctionality independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:\mBbbP{}].  uiff(\mneg{}\mneg{}\mneg{}A;\mneg{}A)



Date html generated: 2018_05_21-PM-00_00_14
Last ObjectModification: 2018_05_19-AM-07_13_33

Theory : core_2


Home Index