Nuprl Lemma : ds_property

[A:Type]. ∀[d:DS(A)]. ∀[a:A]. ∀[x,y:dstype(A; d; a)].  {uiff(x y ∈ dstype(A; d; a);↑y)}


Proof




Definitions occuring in Statement :  eq_ds: y dstype: dstype(TypeNames; d; a) discrete_struct: DS(A) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T eq_ds: y dseq: dseq(d;a) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: discrete_struct: DS(A) dstype: dstype(TypeNames; d; a) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  deq_property dstype_wf assert_witness discrete_struct_wf eq_ds_wf equal_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality productElimination independent_pairEquality because_Cache independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality universeEquality applyEquality

Latex:
\mforall{}[A:Type].  \mforall{}[d:DS(A)].  \mforall{}[a:A].  \mforall{}[x,y:dstype(A;  d;  a)].    \{uiff(x  =  y;\muparrow{}x  =  y)\}



Date html generated: 2016_05_14-PM-03_24_26
Last ObjectModification: 2015_12_26-PM-06_21_49

Theory : decidable!equality


Home Index