Nuprl Lemma : finite_functionality_wrt_equipollent

[A,B:Type].  (A  (finite(A) ⇐⇒ finite(B)))


Proof




Definitions occuring in Statement :  finite: finite(T) equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q finite: finite(T) exists: x:A. B[x] member: t ∈ T guard: {T} nat: prop: rev_implies:  Q
Lemmas referenced :  equipollent_inversion equipollent_transitivity int_seg_wf equipollent_wf finite_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut introduction extract_by_obid isectElimination independent_functionElimination hypothesis natural_numberEquality setElimination rename cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  {}\mRightarrow{}  (finite(A)  \mLeftarrow{}{}\mRightarrow{}  finite(B)))



Date html generated: 2016_10_21-AM-11_00_21
Last ObjectModification: 2016_08_06-PM-02_35_38

Theory : equipollence!!cardinality!


Home Index