Nuprl Lemma : function_functionality_wrt_equipollent_right

[A,B,C:Type].  (A  C ⟶ C ⟶ B)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  equipollent_wf equipollent_functionality_wrt_equipollent function_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality functionEquality lambdaEquality because_Cache independent_functionElimination sqequalRule independent_isectElimination productElimination

Latex:
\mforall{}[A,B,C:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  {}\mrightarrow{}  A  \msim{}  C  {}\mrightarrow{}  B)



Date html generated: 2016_10_21-AM-10_57_49
Last ObjectModification: 2016_08_06-PM-03_12_56

Theory : equipollence!!cardinality!


Home Index