Nuprl Lemma : singleton-type-function
∀[A:Type]. ∀[B:A ⟶ Type].  ((∀a:A. singleton-type(B[a])) 
⇒ singleton-type(a:A ⟶ B[a]))
Proof
Definitions occuring in Statement : 
singleton-type: singleton-type(A)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
singleton-type: singleton-type(A)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
pi1: fst(t)
Lemmas referenced : 
all_wf, 
equal_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
sqequalHypSubstitution, 
productElimination, 
dependent_pairFormation, 
hypothesisEquality, 
functionExtensionality, 
functionEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
cumulativity, 
universeEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((\mforall{}a:A.  singleton-type(B[a]))  {}\mRightarrow{}  singleton-type(a:A  {}\mrightarrow{}  B[a]))
Date html generated:
2016_05_14-PM-04_02_12
Last ObjectModification:
2015_12_26-PM-07_43_08
Theory : equipollence!!cardinality!
Home
Index