Nuprl Lemma : singleton-type-function

[A:Type]. ∀[B:A ⟶ Type].  ((∀a:A. singleton-type(B[a]))  singleton-type(a:A ⟶ B[a]))


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  singleton-type: singleton-type(A) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T all: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x] guard: {T} pi1: fst(t)
Lemmas referenced :  all_wf equal_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut hypothesis promote_hyp thin sqequalHypSubstitution productElimination dependent_pairFormation hypothesisEquality functionExtensionality functionEquality applyEquality lemma_by_obid isectElimination lambdaEquality cumulativity universeEquality rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((\mforall{}a:A.  singleton-type(B[a]))  {}\mRightarrow{}  singleton-type(a:A  {}\mrightarrow{}  B[a]))



Date html generated: 2016_05_14-PM-04_02_12
Last ObjectModification: 2015_12_26-PM-07_43_08

Theory : equipollence!!cardinality!


Home Index