Nuprl Lemma : singleton-type-top

singleton-type(Top)


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) top: Top
Definitions unfolded in proof :  singleton-type: singleton-type(A) exists: x:A. B[x] member: t ∈ T top: Top all: x:A. B[x] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  top_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation isect_memberEquality voidElimination voidEquality lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality

Latex:
singleton-type(Top)



Date html generated: 2016_05_14-PM-04_02_05
Last ObjectModification: 2015_12_26-PM-07_43_14

Theory : equipollence!!cardinality!


Home Index