Nuprl Lemma : bij_iff_1_1_corr
∀[A,B:Type].  (∃f:A ⟶ B. Bij(A;B;f) 
⇐⇒ 1-1-Corresp(A;B))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
one_one_corr: 1-1-Corresp(A;B)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
one_one_corr: 1-1-Corresp(A;B)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
exists_wf, 
biject_wf, 
inv_funs_wf, 
bij_imp_exists_inv, 
fun_with_inv_is_bij
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality, 
productElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].    (\mexists{}f:A  {}\mrightarrow{}  B.  Bij(A;B;f)  \mLeftarrow{}{}\mRightarrow{}  1-1-Corresp(A;B))
Date html generated:
2019_06_20-PM-00_26_37
Last ObjectModification:
2018_09_26-PM-00_11_01
Theory : fun_1
Home
Index