Nuprl Lemma : bij_iff_1_1_corr

[A,B:Type].  (∃f:A ⟶ B. Bij(A;B;f) ⇐⇒ 1-1-Corresp(A;B))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) one_one_corr: 1-1-Corresp(A;B) uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  one_one_corr: 1-1-Corresp(A;B) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  exists_wf biject_wf inv_funs_wf bij_imp_exists_inv fun_with_inv_is_bij
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality lambdaEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  universeEquality productElimination dependent_pairFormation dependent_functionElimination independent_functionElimination independent_isectElimination

Latex:
\mforall{}[A,B:Type].    (\mexists{}f:A  {}\mrightarrow{}  B.  Bij(A;B;f)  \mLeftarrow{}{}\mRightarrow{}  1-1-Corresp(A;B))



Date html generated: 2019_06_20-PM-00_26_37
Last ObjectModification: 2018_09_26-PM-00_11_01

Theory : fun_1


Home Index