Nuprl Lemma : evalall-equal

[T:Type]. ∀[t:T].  evalall(t) t ∈ supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  evalall-reduce valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    evalall(t)  =  t  supposing  valueall-type(T)



Date html generated: 2016_05_13-PM-04_07_41
Last ObjectModification: 2015_12_26-AM-11_03_52

Theory : fun_1


Home Index