Nuprl Lemma : ext-eq-implies-biject

[T,S:Type].  (T ≡  Bij(S;T;λx.x))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) ext-eq: A ≡ B uall: [x:A]. B[x] implies:  Q lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] guard: {T} uimplies: supposing a subtype_rel: A ⊆B surject: Surj(A;B;f) exists: x:A. B[x]
Lemmas referenced :  ext-eq_wf subtype_rel_weakening equal_functionality_wrt_subtype_rel2 equal_wf ext-eq_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality independent_pairFormation sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality dependent_pairFormation

Latex:
\mforall{}[T,S:Type].    (T  \mequiv{}  S  {}\mRightarrow{}  Bij(S;T;\mlambda{}x.x))



Date html generated: 2016_10_21-AM-09_40_40
Last ObjectModification: 2016_08_07-PM-06_29_39

Theory : fun_1


Home Index