Nuprl Lemma : ext-eq-implies-biject
∀[T,S:Type].  (T ≡ S 
⇒ Bij(S;T;λx.x))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
surject: Surj(A;B;f)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
ext-eq_wf, 
subtype_rel_weakening, 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
ext-eq_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
dependent_pairFormation
Latex:
\mforall{}[T,S:Type].    (T  \mequiv{}  S  {}\mRightarrow{}  Bij(S;T;\mlambda{}x.x))
Date html generated:
2016_10_21-AM-09_40_40
Last ObjectModification:
2016_08_07-PM-06_29_39
Theory : fun_1
Home
Index