Nuprl Lemma : valueall-type-has-value

[T:Type]. ∀[t:T].  (t)↓ supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓
Lemmas referenced :  valueall-type_wf valueall-type-value-type value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomSqleEquality hypothesis lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    (t)\mdownarrow{}  supposing  valueall-type(T)



Date html generated: 2016_05_13-PM-04_07_52
Last ObjectModification: 2015_12_26-AM-11_03_45

Theory : fun_1


Home Index