Nuprl Lemma : div-mul-cancel2

[a:ℤ]. ∀[n,m:ℤ-o].  ((n a) ÷ a ÷ m)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base mul-commutes div-mul-cancel trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality isect_memberEquality_alt hypothesisEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((n  *  a)  \mdiv{}  n  *  m  \msim{}  a  \mdiv{}  m)



Date html generated: 2020_05_19-PM-09_41_14
Last ObjectModification: 2019_12_28-AM-11_28_39

Theory : int_2


Home Index