Nuprl Lemma : div-mul-cancel2
∀[a:ℤ]. ∀[n,m:ℤ-o]. ((n * a) ÷ n * m ~ a ÷ m)
Proof
Definitions occuring in Statement :
int_nzero: ℤ-o
,
uall: ∀[x:A]. B[x]
,
divide: n ÷ m
,
multiply: n * m
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
Lemmas referenced :
subtype_base_sq,
int_subtype_base,
mul-commutes,
div-mul-cancel,
trivial-equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
hypothesis,
sqequalRule,
because_Cache,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
axiomSqEquality,
isect_memberEquality_alt,
hypothesisEquality,
isectIsTypeImplies,
inhabitedIsType
Latex:
\mforall{}[a:\mBbbZ{}]. \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}]. ((n * a) \mdiv{} n * m \msim{} a \mdiv{} m)
Date html generated:
2020_05_19-PM-09_41_14
Last ObjectModification:
2019_12_28-AM-11_28_39
Theory : int_2
Home
Index