Nuprl Lemma : div-mul-cancel2
∀[a:ℤ]. ∀[n,m:ℤ-o].  ((n * a) ÷ n * m ~ a ÷ m)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
divide: n ÷ m, 
multiply: n * m, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
mul-commutes, 
div-mul-cancel, 
trivial-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
isect_memberEquality_alt, 
hypothesisEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((n  *  a)  \mdiv{}  n  *  m  \msim{}  a  \mdiv{}  m)
Date html generated:
2020_05_19-PM-09_41_14
Last ObjectModification:
2019_12_28-AM-11_28_39
Theory : int_2
Home
Index