Nuprl Lemma : mul-nat
∀[x,y:ℕ].  (x * y ∈ ℕ)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
multiply: n * m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
mul_bounds_1a, 
le_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
multiplyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbN{}].    (x  *  y  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-AM-07_34_11
Last ObjectModification:
2015_12_26-PM-01_23_34
Theory : int_2
Home
Index