Nuprl Lemma : mul-nat

[x,y:ℕ].  (x y ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] member: t ∈ T multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: prop:
Lemmas referenced :  mul_bounds_1a le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality multiplyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality lemma_by_obid isectElimination hypothesis natural_numberEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbN{}].    (x  *  y  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-07_34_11
Last ObjectModification: 2015_12_26-PM-01_23_34

Theory : int_2


Home Index