Nuprl Lemma : sq_stable__ex_int_upper_ap
∀n:ℤ. ∀f:{n...} ⟶ 𝔹.  SqStable(∃m:{n...}. (↑(f m)))
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
assert: ↑b
, 
bool: 𝔹
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mu-ge-property, 
mu-ge_wf, 
assert_witness, 
assert_wf, 
squash_wf, 
exists_wf, 
int_upper_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
dependent_pairEquality, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
intEquality
Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}f:\{n...\}  {}\mrightarrow{}  \mBbbB{}.    SqStable(\mexists{}m:\{n...\}.  (\muparrow{}(f  m)))
Date html generated:
2016_05_14-AM-07_28_53
Last ObjectModification:
2015_12_26-PM-01_26_59
Theory : int_2
Home
Index