Nuprl Lemma : sq_stable__ex_int_upper_ap

n:ℤ. ∀f:{n...} ⟶ 𝔹.  SqStable(∃m:{n...}. (↑(f m)))


Proof




Definitions occuring in Statement :  int_upper: {i...} assert: b bool: 𝔹 sq_stable: SqStable(P) all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q member: t ∈ T squash: T uall: [x:A]. B[x] uimplies: supposing a guard: {T} and: P ∧ Q exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mu-ge-property mu-ge_wf assert_witness assert_wf squash_wf exists_wf int_upper_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination dependent_pairEquality applyEquality independent_functionElimination because_Cache sqequalRule lambdaEquality functionEquality intEquality

Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}f:\{n...\}  {}\mrightarrow{}  \mBbbB{}.    SqStable(\mexists{}m:\{n...\}.  (\muparrow{}(f  m)))



Date html generated: 2016_05_14-AM-07_28_53
Last ObjectModification: 2015_12_26-PM-01_26_59

Theory : int_2


Home Index