Nuprl Lemma : cbv-concat_wf
∀[T:Type]. ∀[ll:T List List]. (cbv-concat(ll) ∈ T List)
Proof
Definitions occuring in Statement :
cbv-concat: cbv-concat(ll)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
top: Top
Lemmas referenced :
cbv-concat-sq,
subtype_rel_list,
list_wf,
top_wf,
concat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
applyEquality,
hypothesis,
independent_isectElimination,
lambdaEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[ll:T List List]. (cbv-concat(ll) \mmember{} T List)
Date html generated:
2016_05_14-AM-06_32_06
Last ObjectModification:
2015_12_26-PM-00_37_57
Theory : list_0
Home
Index