Nuprl Lemma : filter_tt

[L:Top List]. (filter(λx.tt;L) L)


Proof




Definitions occuring in Statement :  filter: filter(P;l) list: List btrue: tt uall: [x:A]. B[x] top: Top lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt l_all: (∀x∈L.P[x]) all: x:A. B[x] true: True
Lemmas referenced :  filter_trivial top_wf btrue_wf list_wf int_seg_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality independent_isectElimination sqequalAxiom lambdaFormation natural_numberEquality

Latex:
\mforall{}[L:Top  List].  (filter(\mlambda{}x.tt;L)  \msim{}  L)



Date html generated: 2016_05_14-AM-06_50_40
Last ObjectModification: 2015_12_26-PM-00_22_36

Theory : list_0


Home Index