Nuprl Lemma : filter_tt
∀[L:Top List]. (filter(λx.tt;L) ~ L)
Proof
Definitions occuring in Statement : 
filter: filter(P;l)
, 
list: T List
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
true: True
Lemmas referenced : 
filter_trivial, 
top_wf, 
btrue_wf, 
list_wf, 
int_seg_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
sqequalAxiom, 
lambdaFormation, 
natural_numberEquality
Latex:
\mforall{}[L:Top  List].  (filter(\mlambda{}x.tt;L)  \msim{}  L)
Date html generated:
2016_05_14-AM-06_50_40
Last ObjectModification:
2015_12_26-PM-00_22_36
Theory : list_0
Home
Index