Nuprl Lemma : map_length_nat

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  (||map(f;as)|| ||as|| ∈ ℕ)


Proof




Definitions occuring in Statement :  length: ||as|| map: map(f;as) list: List nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  map-length length_wf_nat list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    (||map(f;as)||  =  ||as||)



Date html generated: 2016_05_14-AM-06_35_09
Last ObjectModification: 2015_12_26-PM-00_35_06

Theory : list_0


Home Index