Nuprl Lemma : biject-iff-inverse
∀[A,B:Type].  ∀f:A ⟶ B. (∃g:B ⟶ A. InvFuns(A;B;f;g) 
⇐⇒ Bij(A;B;f))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
inv_funs: InvFuns(A;B;f;g)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
exists_wf, 
inv_funs_wf, 
biject_wf, 
fun_with_inv_is_bij, 
biject-inverse2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g)  \mLeftarrow{}{}\mRightarrow{}  Bij(A;B;f))
Date html generated:
2016_05_14-PM-01_53_50
Last ObjectModification:
2015_12_26-PM-05_39_55
Theory : list_1
Home
Index