Nuprl Lemma : biject-iff-inverse

[A,B:Type].  ∀f:A ⟶ B. (∃g:B ⟶ A. InvFuns(A;B;f;g) ⇐⇒ Bij(A;B;f))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] uimplies: supposing a
Lemmas referenced :  exists_wf inv_funs_wf biject_wf fun_with_inv_is_bij biject-inverse2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality sqequalRule lambdaEquality hypothesis universeEquality productElimination dependent_functionElimination independent_isectElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g)  \mLeftarrow{}{}\mRightarrow{}  Bij(A;B;f))



Date html generated: 2016_05_14-PM-01_53_50
Last ObjectModification: 2015_12_26-PM-05_39_55

Theory : list_1


Home Index