Nuprl Lemma : cardinality-le-finite
∀[T:Type]. ∀n:ℕ. (|T| ≤ n
⇒ finite-type(T))
Proof
Definitions occuring in Statement :
cardinality-le: |T| ≤ n
,
finite-type: finite-type(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
finite-type: finite-type(T)
,
cardinality-le: |T| ≤ n
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
int_seg_wf,
surject_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
dependent_pairFormation,
hypothesisEquality,
hypothesis,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionEquality,
natural_numberEquality,
setElimination,
rename,
lambdaEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}n:\mBbbN{}. (|T| \mleq{} n {}\mRightarrow{} finite-type(T))
Date html generated:
2016_05_14-PM-01_51_40
Last ObjectModification:
2015_12_26-PM-05_37_42
Theory : list_1
Home
Index