Nuprl Lemma : cardinality-le-finite

[T:Type]. ∀n:ℕ(|T| ≤  finite-type(T))


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n finite-type: finite-type(T) nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  finite-type: finite-type(T) cardinality-le: |T| ≤ n uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf int_seg_wf surject_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation hypothesisEquality hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  (|T|  \mleq{}  n  {}\mRightarrow{}  finite-type(T))



Date html generated: 2016_05_14-PM-01_51_40
Last ObjectModification: 2015_12_26-PM-05_37_42

Theory : list_1


Home Index