Nuprl Lemma : cardinality-le-finite
∀[T:Type]. ∀n:ℕ. (|T| ≤ n 
⇒ finite-type(T))
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n
, 
finite-type: finite-type(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
finite-type: finite-type(T)
, 
cardinality-le: |T| ≤ n
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
surject_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  (|T|  \mleq{}  n  {}\mRightarrow{}  finite-type(T))
Date html generated:
2016_05_14-PM-01_51_40
Last ObjectModification:
2015_12_26-PM-05_37_42
Theory : list_1
Home
Index