Nuprl Lemma : cmp-type_wf

[T:Type]. ∀cmp:comparison(T). (cmp-type(T;cmp) ∈ Type)


Proof




Definitions occuring in Statement :  cmp-type: cmp-type(T;cmp) comparison: comparison(T) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] cmp-type: cmp-type(T;cmp) so_lambda: λ2y.t[x; y] comparison: comparison(T) so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  comparison_wf comparison-equiv equal-wf-T-base quotient_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality intEquality applyEquality setElimination rename baseClosed hypothesis because_Cache independent_isectElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  (cmp-type(T;cmp)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-02_37_32
Last ObjectModification: 2016_01_15-AM-07_41_54

Theory : list_1


Home Index