Nuprl Lemma : cmp-type_wf
∀[T:Type]. ∀cmp:comparison(T). (cmp-type(T;cmp) ∈ Type)
Proof
Definitions occuring in Statement : 
cmp-type: cmp-type(T;cmp)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
cmp-type: cmp-type(T;cmp)
, 
so_lambda: λ2x y.t[x; y]
, 
comparison: comparison(T)
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
comparison_wf, 
comparison-equiv, 
equal-wf-T-base, 
quotient_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
baseClosed, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  (cmp-type(T;cmp)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-02_37_32
Last ObjectModification:
2016_01_15-AM-07_41_54
Theory : list_1
Home
Index