Nuprl Lemma : comb_for_l_all_wf
λT,L,P,z. (∀x∈L.P[x]) ∈ T:Type ⟶ L:(T List) ⟶ P:(T ⟶ ℙ) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
prop: ℙ
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
subtype: S ⊆ T
, 
suptype: suptype(S; T)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf, 
set_wf, 
l_member_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
hypothesis, 
functionExtensionality, 
universeEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity
Latex:
\mlambda{}T,L,P,z.  (\mforall{}x\mmember{}L.P[x])  \mmember{}  T:Type  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  P:(T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2016_05_14-AM-07_47_46
Last ObjectModification:
2015_12_26-PM-02_55_04
Theory : list_1
Home
Index