Nuprl Lemma : comb_for_l_all_wf

λT,L,P,z. (∀x∈L.P[x]) ∈ T:Type ⟶ L:(T List) ⟶ P:(T ⟶ ℙ) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) list: List prop: so_apply: x[s] squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] subtype: S ⊆ T suptype: suptype(S; T) all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_all_wf set_wf l_member_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality lambdaFormation setElimination rename because_Cache sqequalRule hypothesis functionExtensionality universeEquality dependent_functionElimination equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mlambda{}T,L,P,z.  (\mforall{}x\mmember{}L.P[x])  \mmember{}  T:Type  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  P:(T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2016_05_14-AM-07_47_46
Last ObjectModification: 2015_12_26-PM-02_55_04

Theory : list_1


Home Index