Nuprl Lemma : finite-type-bool

finite-type(𝔹)


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) bool: 𝔹
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  cardinality-le-finite bool_wf false_wf le_wf bool-cardinality-le
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis dependent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesisEquality independent_functionElimination

Latex:
finite-type(\mBbbB{})



Date html generated: 2016_05_14-PM-01_52_19
Last ObjectModification: 2015_12_26-PM-05_38_24

Theory : list_1


Home Index