Nuprl Lemma : finite-type-bool
finite-type(𝔹)
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
bool: 𝔹
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
cardinality-le-finite, 
bool_wf, 
false_wf, 
le_wf, 
bool-cardinality-le
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination
Latex:
finite-type(\mBbbB{})
Date html generated:
2016_05_14-PM-01_52_19
Last ObjectModification:
2015_12_26-PM-05_38_24
Theory : list_1
Home
Index