Nuprl Lemma : iseg_append0
∀[T:Type]. ∀l1,l2:T List.  l1 ≤ l1 @ l2
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
append_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    l1  \mleq{}  l1  @  l2
Date html generated:
2019_06_20-PM-01_29_43
Last ObjectModification:
2018_09_26-PM-05_59_26
Theory : list_1
Home
Index