Nuprl Lemma : iseg_append0

[T:Type]. ∀l1,l2:T List.  l1 ≤ l1 l2


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop:
Lemmas referenced :  append_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation dependent_pairFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    l1  \mleq{}  l1  @  l2



Date html generated: 2019_06_20-PM-01_29_43
Last ObjectModification: 2018_09_26-PM-05_59_26

Theory : list_1


Home Index