Nuprl Lemma : poly-int-val_wf2
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p:polynom(n)]. (p@l ∈ ℤ)
Proof
Definitions occuring in Statement :
poly-int-val: p@l
,
polynom: polynom(n)
,
length: ||as||
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
so_apply: x[s]
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
nat_wf,
list_wf,
set_wf,
polynom_wf,
polynom_subtype_polyform,
int_subtype_base,
list_subtype_base,
equal-wf-base-T,
poly-int-val_wf
Rules used in proof :
lambdaEquality,
because_Cache,
isect_memberEquality,
axiomEquality,
equalitySymmetry,
equalityTransitivity,
independent_isectElimination,
applyEquality,
baseClosed,
closedConclusion,
baseApply,
sqequalRule,
intEquality,
hypothesis,
dependent_set_memberEquality,
rename,
setElimination,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[l:\{l:\mBbbZ{} List| ||l|| = n\} ]. \mforall{}[p:polynom(n)]. (p@l \mmember{} \mBbbZ{})
Date html generated:
2017_04_17-AM-09_04_51
Last ObjectModification:
2017_04_13-PM-01_21_36
Theory : list_1
Home
Index