Nuprl Lemma : unzip_wf
∀[T1,T2:Type]. ∀[as:(T1 × T2) List].  (unzip(as) ∈ T1 List × (T2 List))
Proof
Definitions occuring in Statement : 
unzip: unzip(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unzip: unzip(as)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
map_wf, 
pi1_wf, 
pi2_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
isect_memberEquality, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:(T1  \mtimes{}  T2)  List].    (unzip(as)  \mmember{}  T1  List  \mtimes{}  (T2  List))
Date html generated:
2019_06_20-PM-01_47_22
Last ObjectModification:
2018_09_26-PM-02_51_08
Theory : list_1
Home
Index