Nuprl Lemma : unzip_wf

[T1,T2:Type]. ∀[as:(T1 × T2) List].  (unzip(as) ∈ T1 List × (T2 List))


Proof




Definitions occuring in Statement :  unzip: unzip(as) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unzip: unzip(as) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  map_wf pi1_wf pi2_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule independent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  isect_memberEquality because_Cache Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:(T1  \mtimes{}  T2)  List].    (unzip(as)  \mmember{}  T1  List  \mtimes{}  (T2  List))



Date html generated: 2019_06_20-PM-01_47_22
Last ObjectModification: 2018_09_26-PM-02_51_08

Theory : list_1


Home Index