Nuprl Lemma : gcd-reduce-prime

p,q:ℤ.  ∃x,y:ℤ(((x p) (y q)) 1 ∈ ℤsupposing prime(p) ∧ (p q))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a prop: and: P ∧ Q uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  gcd-reduce-coprime prime_wf not_wf divides_wf coprime_iff_ndivides
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation independent_isectElimination productEquality isectElimination intEquality productElimination independent_functionElimination

Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}x,y:\mBbbZ{}.  (((x  *  p)  +  (y  *  q))  =  1)  supposing  prime(p)  \mwedge{}  (\mneg{}(p  |  q))



Date html generated: 2018_05_21-PM-00_59_25
Last ObjectModification: 2018_05_19-AM-06_35_33

Theory : num_thy_1


Home Index